

1

sdmay24-36

Client/Adivsor: Henry Duwe

Adviser: Mathew Wymore

Team Members/Roles:

Mac Whitney: Team Lead
Kyle Geerts: Canvas Integration/API

Alec Frey: Prompt Engineering
Reese Jamison: Backend and Scribe

William Nash: Full Stack Design
Johnny Tran: Research and Testing

sdmay24-36@iastate.edu

https://sdmay24-36.sd.ece.iastate.edu

Revised: April 25, 2024

Using Generative AI to Assess Learning

 FINAL REPORT DOCUMENT

2

Development Standards & Practices Used

• Programming language

o Our program will be written in JavaScript. While there is no official standard for

JavaScript, we will do our best to adhere to the JavaScript Reference. Python was

used for the first design, but this was updated.

• Standard of Software Engineering Technology (IEEE 610.12)

o Providing a glossary of software engineering terminology, establishing a common

language, and understanding in the field.

• Standard for Security and Trustworthiness Requirements in Generative Pretrained

Artificial Intelligence (AI) Models (P7018)

o This standard establishes a comprehensive framework for mitigating security risks,

privacy leaking in the development, deployment, and use of generative pretrained

AI models.

• FERPA (not engineering, but said we should include it)

o Establishes rules for student data and how it should be handled (need to know

basis)

• JSON(ECMA-404)

o Follow correct syntax for data transfer with JSON requests

• HTTP

o RFC 2616

• IEEE Code of Ethics

o Uphold the highest standards of integrity, responsible behavior, and ethical

conduct throughout the development

• Prompt Engineering

o Prompt Patterns

▪ Describes the approach taken to craft prompts to elicit a specific

response.

Executive Summary

3

New Skills/Knowledge acquired that was not taught in courses
Tools

• OpenAI API

• Developer Canvas

• React.js/Node.js

Skills

• Integrating application in canvas

• React.js / Node.js

• Agile Workflow

• Prompt Engineering

Knowledge Gained

• Creating Effective Prompts for Generative AI

• Testing Generative AI

4

Table of Contents

Problem Statement ... 5

Intended Users and Uses ... 6

Similar Products on the Market .. 6

Revised Design .. 8

Requirements .. 9

Engineering Standards .. 10

Security Concerns and Countermeasures .. 11

Design Evolution ... 12

Initial Design .. 12

Functionality .. 13

Design 1 (Design Iteration) ... 14

Design Visual and Description ... 14

Implementation ... 15

Testing .. 16

Unit Testing ... 16

Interface Testing .. 17

System Testing ... 18

Regression Testing .. 18

Acceptance Testing ... 18

Testing Results ... 19

Broader Context .. 20

Closing Material .. 22

Conclusion ... 22

Final Progress ... 22

Value ... 22

Appendix 1 – Operation Manual .. 23

Appendix 2 – Initial Version of Design ... 25

Appendix 3 – Code.. 26

5

Problem Statement

General statement: Utilize generative AI (ChatGPT) to develop and assess students' learning via a

personalized conversational format to develop a deeper understanding of the reasoning behind

students’ answers.

Problems being solved:

• How to create more time for ambitious professors to complete more tasks/research?

o Be able to automatically generate an exam by only providing the topic and lecture

material used to cover that topic in their class.

o Be able to have a thorough automatic grading system to grade the automated

exams based on initial response to the question with support generated from the

AI. This cuts down time spent on grading, as well as being able to generate better

analytics on why students understood or misunderstood the topic being quizzed.

• How do we give students a better opportunity to show an in-depth understanding of a

topic when being tested?

• This project will allow students an adequate ability to show their understanding of

a topic in a conversational format with an AI chat bot to probe farther into their

understanding.

• The system will probe the student to gain a better understanding of how they are

thinking, leading to more in-depth grading. This allows for a better representation

of what the student knows.

• How are we able to solve these problems today?

o We are now able to solve these issues because AI’s learning models have gotten to

a large enough scale and can accurately hold topic focused conversations that

allow for in-depth question generation and response understanding.

o OpenAI allows for an extensive modeling program that can solve difficult

problems with greater accuracy, thanks to its broader general knowledge and

problem-solving abilities.

o Utilizing prompt engineering helps to train the AI to act as expected for the

project guidelines, and ensures it is viable for conducting a class quiz.

• Pros:

o Automated test generation and grading allows for faster collection of students'

understanding of the topics covered in class. It also creates more time for

instructors to focus on other tasks.

o Allows the ability for students to show a deep understanding of a topic.

6

▪ If students do not have a deep understanding of the topic, the system will

be able to get a superficial idea of what the student is thinking and grade

them accordingly.

• Cons:

o The lack of human input to grading for academic success.

o AI regulations and ethical practices are in their infant state.

o Exams could be biased towards some students depending on the conversational

responses given by AI, as the questions will be unique per student.

INTENDED USERS AND USES

• Professors and Students

o These are the main people who will use and benefit from this system.

o Professors will benefit through increased efficiency brought with the AI tools for

grading purposes. This will not only benefit professors by saving time making

quizzes, but the goal is for a better quality of exams for both the students and

professors.

o Students will benefit in their studying from a personalized learning tool built

specifically for the specific course. The conversation will be tailored to each

individual student, making a better learning experience for all.

o Professors will input class material into the AI, in which the AI will analyze and

generate a series of questions to test the understanding of the students. Students

will have an interactive exam, in which they will receive feedback and further

questions to examine their understanding of the given class material.

• Teaching assistants

o This is another group of users that will also benefit from the system. The

generative AI model will save them time (re)grading quizzes, and hopefully save

time explaining basic concepts and/or topics to students (possible secondary use).

SIMILAR PRODUCTS ON THE MARKET

The most similar product to the generative AI model that we are using is called PrairieLearn.

PrairieLearn is an online assessment and learning system that empowers instructors to create

robust educational resources for students. It is an open-source software for creating and delivering

learning experiences and assessments for students. Instructors easily write questions as code, which

automatically generate and grade infinite variants of themselves. Students are encouraged to keep

trying new variants of the same question until they achieve mastery. Some pros of PrairieLearn is

there is real-time feedback for students, ability to train, and repetitions so students can repeat until

mastery is achieved.

Gradescope is another software used in an equivalent way. Gradescope helps you seamlessly

administer and grade all of your assessments, whether online or in-class. Save time grading and get

a clear picture of how your students are doing. Some of the pros of Gradescope is that it can

automatically grade students based on a rubric and provide accurate scoring, just like a TA would.

Some cons include no back-and-forth interactions between students and the software.

7

We will be using prompt engineering to form specialized input prompts to elicit a specific response

from ChatGPT. This will be done using prompt patterns, which will aim to provide context, and

constraint for ChatGPT Output

References:

us.prairielearn.com

www.gradescope.com

Below are references to papers about prompt engineering and prompt patterns

White, Jules, et al. “A Prompt Pattern Catalog to Enhance Prompt Engineering with Chatgpt.”

arXiv.Org, 21 Feb. 2023, arxiv.org/abs/2302.11382.

Ekin, Sabit (2023). Prompt Engineering For ChatGPT: A Quick Guide To Techniques, Tips, And

Best Practices. TechRxiv. Preprint. https://doi.org/10.36227/techrxiv.22683919.v2

KorzynskiP., MazurekG., KrzypkowskaP., & KurasinskiA. (2023). Artificial intelligence prompt

engineering as a new digital competence: Analysis of generative AI technologies such as ChatGPT.

Entrepreneurial Business and Economics Review, 11(3), 25-37.

https://doi.org/10.15678/EBER.2023.110302

http://www.gradescope.com/
https://doi.org/10.36227/techrxiv.22683919.v2

8

Revised Design

Figure 1

9

Requirements

Requirements:

• Based on the given information on a topic, be able to hold a back-and-forth conversation

between the student and the AI chatbot. Throughout this conversation, the AI chatbot can

understand the way the student is thinking and lead them in a direction to gain a better

idea of the student’s thought process. While this conversation is happening, the AI chatbot

will be able to grade the student on their answers based on the input given to the

generative AI system. The grading feedback will be available after the quiz is finished.

• Implement the generative AI into Iowa State’s Canvas so the system can quiz students

directly from Canvas. This also allows grades to automatically be updated in Canvas and

includes a link to the grading feedback as a comment.

• The professor would provide the generative AI with notes, lecture slides, research, general

knowledge, or whatever is needed from them, so the system knows the scope of the class

and what is expected to be talked about in the conversation and/or quiz. They will also

provide general constraints and wants for the exam, these include primary topic, number

of questions, type of questions practical or theoretical.

• Follow Iowa State’s FERPA and netiquette standards so the generative AI stays in scope

with the requirements that Iowa State has put forward. This would include proper

language from the chatbot, protecting students’ and teachers’ personal information, and

staying within the law.

• Utilize a large-language model to administer the quizzes.

• Should be able to hold around a 15-minute conversation (+/- one minute) with a student or

follow the question total provided as context. Responses should than 30 seconds.

• Must meet ethical standards so there is fairness between students, limited bias, and quality

control so different students do not get vastly different conversations, leading to a “harder”

quiz for one student vs. another.

• Must have high availability. There should be limited downtime with the system so

professors can use it whenever they need it, and so students do not run into issues during a

timed quiz. This should not be a big problem as the server will be hosted by ETG services

at Iowa State.

Constraints:

• The conversation and questions the AI asks a student must be within the scope of the class

and/or the data provided to the student. This way, the student is not quizzed on something

not discussed in lectures or notes provided by the professor.

10

• Responses from the AI must be appropriate and meet the netiquette standards of Iowa

State. This includes language, respectfulness, honesty, and engagement in the

conversation.

• The tone of the AI should be encouraging and not disrespectful towards the professor or

student.

• Must have high availability so a student can finish their quiz without interruptions.

• The server will be hosted on Iowa State’s internal network, so if the server would have

interruptions, we would have to rely on Iowa State to fix the issues.

ENGINEERING STANDARDS

• Programming language

o Our program will be written in JavaScript. While there is no official standard for

JavaScript, we will do our best to adhere to the JavaScript Reference. Python was

used for the first design, but this was updated.

• Standard of Software Engineering Technology (IEEE 610.12)

o Providing a glossary of software engineering terminology, establishing a common

language, and understanding in the field.

• Standard for Security and Trustworthiness Requirements in Generative Pretrained

Artificial Intelligence (AI) Models (P7018)

o This standard establishes a comprehensive framework for mitigating security risks,

privacy leaking in the development, deployment, and use of generative pretrained

AI models.

• FERPA (not engineering, but said we should include it)

o Establishes rules for student data and how it should be handled (need to know

basis)

• JSON(ECMA-404)

o Follow correct syntax for data transfer with JSON requests

• HTTP

o RFC 2616

• IEEE Code of Ethics

o Uphold the highest standards of integrity, responsible behavior, and ethical

conduct throughout the development

• Prompt Engineering

o Prompt Patterns

o Describes the approach taken to craft prompts to elicit a specific response, based

on the current research published on prompt engineering

11

It is important to note generative AI topics are rapidly growing, so some regulations are developing.

If these standards get developed as our project moves through the semester, we will add them to

our design specifications. We acknowledge that most generative AI standards are not available but

will be added appropriately when they arise.

From IEEE Standards Association:

“We are engaged in forward-looking measures to establish necessary standards and guidelines for

ethically aligned and age-appropriate design, and work to address issues that require an informed

public dialogue and remediate action. AI generative models leverage both established and cutting-

edge computational techniques, offering immense potential across various sectors, including

industry, education, and humanitarian initiatives, and can improve accessibility, as well as

inclusivity in content creation. Despite their promise, generative AI models raise serious ethical

concerns and display profound limitations. AI systems integrate data, algorithms of varying

complexity, sensors, and actuators – each with inherent values, biases, and unanticipated impacts

when introduced into ever-changing socio-technical environments.”

SECURITY CONCERNS AND COUNTERMEASURES

• Given that the tools being used involve interactions with students' educational data, a
robust security and privacy system will be implemented. We did this by having a deep
linking connection via Canvas’s API. This way, all student information stayed connected to
ISU’s environment protecting their privacy.

• We need to ensure that the app functions properly at runtime. This has been achieved by
via prompt engineering and fine tuning of our model to remove unwanted behavior.

12

Design Evolution

INITIAL DESIGN

Figure 2

The diagram has two paths that can be taken, one from the student and the other from the

professor of the class. We will start with the professor’s side of the diagram.

Professor

The professor will login to the Canvas interface through SSO, just as they would normally for any

class. Once logging in, the professor inputs the quiz data within Canvas, specifying content,

number of questions, etc. After which, the data is transferred to a third-party platform called

Chainlit. Here the quiz data enters a pipeline where it is processed by the ETG server and the

OpenAI API, which analyzes and enhances the data. The data is then returned to the Chainlit web

page. This is when the students can start their personal quiz. Once the student finishes the

interactive quiz with ChatGPT, the conversation data is sent through LTI services to update the

grade on Canvas and submit the conversation in the quiz comment.

13

Student

The student will login to Canvas through SSO just as they normally do. They will then navigate to

the quiz section of the specific course and click on the quiz that is due. Once the student opens the

quiz, they will be taken to our custom interface as an application setup through the Canvas API. As

shown by the diagram, the custom interface will be connected straight to a server and the OpenAI

API for ChatGPT purposes. The student will take the quiz through our interface. The quiz will

conclude for the quiz as specified by the professor, and the data from the quiz will be graded by

ChatGPT. The results will be stored in the database for each student. Once the grade is calculated,

the interface will send the data back to Canvas and enter it in the specified quiz section, so the

student can see.

FUNCTIONALITY

• It will operate similarly to a chatbot, where the user will see the latest response from
ChatGPT, type out their response, and be able to hold a conversation with the ChatGPT
program.

o the conversation will consist of the program asking follow-up questions to the
student to better understand the reasoning behind the answer given

• Professors will be able to tweak the program to allow more or less “outside the box
thinking” and to control how much output the program provides.

• At the end of the conversation, now we are shooting for around 15 minutes, the program
will be able to give the student a grade based on the rubric, or guidelines given by the
instructor.

• Then once graded, the program should enter the grade into Canvas for the specified quiz
or exam.

o Upon completion, the program will provide a text file into the comments of the
Canvas assignment that outlines all the questions and responses from the program
and student, respectively.

14

DESIGN 1 (DESIGN ITERATION)

Figure 3

DESIGN VISUAL AND DESCRIPTION

Professor

Even though the underlying infrastructure has changed, the professor view should remain the same

from what is was previously. The professor will login to the Canvas interface through SSO, just as

they would normally for any class. Once logging in, the professor inputs the quiz data within

Canvas, specifying content, number of questions, etc. After which, the data is now transferred to

our next.js program. Here the quiz data enters a pipeline where it is processed by the ETG server

and the OpenAI API, which formats the data and sends it back to the Canvas in a post request. is

when the students can start their personal quiz. Once the student finishes the interactive quiz with

ChatGPT, the conversation data is sent through LTI services to update the grade on Canvas and

submit the conversation in the quiz comment.

15

Student

With the addition of next.js, the student route remains remarkably similar to the first design. The

student will still login to Canvas through SSO just as they normally do. They will then navigate to

the quiz section of the specific course and click on the quiz that is due. Once the student opens the

quiz, they will be taken to our next.js program. As shown by the diagram, the next.js program will

be connected to OpenAI for ChatGPT purposes. The student will take the quiz through our

interface. The quiz will conclude as specified by the professor, and the data from the quiz will be

graded by ChatGPT. The results will be stored in the database for each student. Once the grade is

calculated, the interface will send the data back to Canvas with a submission POST request and

enter it in the specified quiz section, so the student can see it.

Implementation

1. Prompt engineering

a. Continuous refinement of our prompt to assess students the way we want it to.

2. Fine-Tuning a ChatGPT model

a. Fine-tuning was done by manually collecting back and forths with ChatGPT,

modifying them to the type of questions/responses that were desirable and

training ChatGPT off those datasets

3. React/next.js integration

a. Finish implementation of the user interface.

4. Implementation with Canvas

a. App is integrated with Canvas and runs effectively (shows up in canvas tab).

5. Refinement the automatic grading process

a. Follows rubric

b. Ensure grading accuracy

c. ChatGPT offers accurate grades based on students answers with feedback to help

the student better understand their mistakes and learn from them.

6. Testing and validation.

a. Tests are successful (Trial runs, etc. students can take quizzes start to finish with

no errors).

b. Opportunity to test with students

16

Testing

Testing is an extremely important component of most projects, whether it involves a circuit, a
process, power system, or software.

The testing plan should connect the requirements and the design to the adopting test strategy and
instruments. In this overarching introduction, an overview of the testing strategy is given.
Emphasize any unique challenges to testing your system/design.

The following is our testing plan and process we will be implementing to address acceptance
testing, usability testing, security, and performance testing.

UNIT TESTING

In this section, we wanted to create a comprehensive testing plan that would be able to test not
only our individual design components, but our final integrated product. The goal of our testing
was to create a system that would ensure each module’s desired functionality is achieved
individually.

Units

• Web application
o Quiz generation

▪ For interactions with OpenAI’s API and our JavaScript environment used
for communication with the chat bot we will be able to use PyTest to
make sure that the javascript driving the applications connections are
robust and accurate for the exam execution.

o Quiz taking
o Results and reporting

▪ When approaching testing for our web application that is developed with
Next.js. We will use Cypress testing and its ability to be able to run both
End-to-End and Component Testing to be able to cover each component
as well as full End-to-End testing to show full usability testing.

• C0mponents:
o Conversation Thread – Both the UI as well as the

processing to the API calls.
o Professor File Upload and Topic/Context Generation.
o Canvas Embedded Frame integration View from multiple

display sizes and device formats.

• End-To-End:
o Full testing from professor context and quiz topic

proposal to completion of the exam with results being
posted on canvas.

• Canvas integration
o Student integration and view / states of application when opened

• API Calls
o Open AI API calls

▪ Basic testing is needed to make sure that the endpoints are active and
reachable when opening a quiz.

• Chat.create()

17

o Canvas API calls
▪ Basic testing to make sure communication can be made from our

application into Canvas’s environment.

• GET, POST requests with needed parameters to create quizzes,
and submissions (grades)

• It is possible to extract text data from these specific parameters
o Parameters can be assigned to a variable

INTERFACE TESTING

For our interface testing, we have 3 primary interfaces: one for quiz execution, Canvases embedded
architecture's view, and the test creating/generation of constraints professor interface.

Interfaces:

• Canvas quiz Screen

• Conversation screen

Overall Interface Testing:

• We will be using a User-Centered Design for creating our interfaces. This will allow us to
be focused on making an easy-to-follow self-guidable experience when taking an exam
using our software.

o We will be using Human-Computer Interaction and Web Content Accessibility
Guidelines as benchmarks for testing.

o We will also be using Nielsen Norman Groups 5 Usability Heuristics for User
Interface Design and manual testing to make sure each of the following categories
are satisfactorily met.

▪ Visibility of System status

• Showing the quiz is live and started via prompts and text box
interactions

▪ Consistency and standards

• Use proper conventions that are common in UI development and
on other web applications to keep uniformity and a self-navigable
environment.

▪ Recognition rather than recall

• Having recognizable components that are easy to navigate
without instruction.

▪ Aesthetic and minimalistic design

• Creating a conversational interface as well as a professor quiz
creator page that is easy to follow and is devoid of distractions for
a proper testing environment.

▪ Documentation

• Having clear and readable documentation for all groups of users
who will be interacting with our software

The Interface testing will be in partnership with the component testing to make sure the frames
and states that are displayed to the user are accurate and follow the guidelines listed above by using
both automated unit testing and manual UI accessibility and usability guidelines.

18

SYSTEM TESTING

Describe system level testing strategy. What set of unit tests, interface tests, and integration tests

suffice for system level testing? This should be closely tied to the requirements. Tools?

Check for response time, overall accuracy of responses, as well as things like token

generation/overall costs.

Ie. Student asks program to break the rules 100 times, does the program say no every time?

REGRESSION TESTING

How are you ensuring that any new additions do not break the old functionality? What

implemented critical features do you need to ensure they do not break? Is it driven by

requirements? Tools?

Due to the nature of AI development and integration for our application, most of the regression

testing will come from the need to be able to increase the accuracy and effectiveness of our AI

model used for test generation and automatic grading.

This will come through the constant testing for benchmarking our system on the following key

principles:

• Performance goals tied to acceptance testing

• Load testing

o How many users can we have on our server instance running the site at the same

time.

• Endurance testing

o How does the AI respond to large time gaps or marginally longer and shorter

exams.

• Response testing

o How long does it take each iteration of the model to complete the tasks required of

it and how does this change depend on the question type, either practical or

theoretical.

• Thruput testing

o How does it handle quick rapid-fire responses from students.

• Repeat testing

o Continued testing to achieve the most accurate model for our application.

ACCEPTANCE TESTING

Our approach to validating the fulfillment of our design requirements involves a comprehensive
verification process. To make sure our design meets the desired specifications, we will
continuously verify that our results match our tests (listed above). In addition to passing tests, we
will get continuous feedback from our clients to make sure their vision corresponds to our vision
in the design.

19

We will also make sure to be able to show statistics on the functional requirements for our
application which include:

• Time to complete the next question generation after users' response has been submitted.

• Average cost total per exam dependent upon question length parameter

We will also make sure to be able to document examples of an accurate system by showing
examples of completed quizzes and provide feedback as to design issues when it comes to expected
vs. actual output instances.

The last requirement for acceptance testing will be in the form of ISU Netiquette compliance. This
will be achieved with model management and fine-tuning, which will require manual testing to
ensure that the guidelines are being met correctly. www.celt.iastate.edu/wp-
content/uploads/2015/09/netiquetteatISU.pdf

TESTING RESULTS

Fine-tuning has been shown to improve follow-up question generation. This helped lead us to

achieving the goal of having a more adaptable exam environment.

Canvas integration was used in testing the endpoints of the APIs and demonstrated proper

interactions via users when taking exams and communicating grades back to Canvas.

https://www.celt.iastate.edu/wp-content/uploads/2015/09/netiquetteatISU.pdf
https://www.celt.iastate.edu/wp-content/uploads/2015/09/netiquetteatISU.pdf

20

Broader Context

Area Description Examples

Public health,
safety, and
welfare

How does your project affect the
general well-being of various
stakeholder groups? These groups
may be direct users or may be
indirectly affected (e.g., solution is
implemented in their
communities)

Users (Students) our project deals
with AI chatbot interactions
between a user and the bot using
conversational prompts to be able
to figure the next step in the
conversation. We must be
considerate of mental health and
ensure that our conversation
follows the correct ethical and ISU
netiquette protocols, to ensure
students are always treated fairly.

Cursing, negative responses,
condescending responses and ethical
responses.

Global, cultural,
and social

How well does your project reflect
the values, practices, and aims of
the cultural groups it affects?
Groups may include but are not
limited to specific communities,
nations, professions, workplaces,
and ethnic cultures.

Students- this project hopes to
assign grades more accurately to
students based more on their
knowledge of a subject than just a
right or wrong answer, and
subsequently make life for
professors easier by automating the
grading and quiz administering
process

Development or operation of the
solution would violate a profession’s
code of ethics, implementation of the
solution would require an undesired
change in community practices

By focusing on understanding rather
than correctness, the project seeks to
support students who may have
different ways of approaching and
expressing their knowledge.

Environmental What environmental impact might
your project have? This can include
indirect effects, such as
deforestation or unsustainable
practices related to materials
manufacture or procurement.

Our project would most likely
increase energy usage on campus as

Increasing/decreasing energy usage
from nonrenewable sources,
increasing/decreasing
usage/production of non-recyclable
materials

Shifting from paper-based exams to
online quizzes reduces the demand for
paper, potentially lowering

21

every student would be taking
quizzes online through OpenAI
instead of possibly on paper in a
classroom. Additionally, professors
would need to access the same
system to input quiz information,
further increasing energy usage.

deforestation rates.

Carbon foot print of Chat GPT is Cited
at 8.4 tons of carbon dioxide per year
which is about the same amount as 2
people contribute in a total year.

Water consumption a conversation of
20-50 questions consumes 500 ml of
water and training GPT-3 required a
staggering 700,301 liters of water.

Economic What economic impact might your
project have? This can include the
financial viability of your product
within your team or company, cost
to consumers, or broader economic
effects on communities, markets,
nations, and other groups.

Quizzes should cost less than $2 per
quiz per person, based on
preliminary estimation using token
costs.

Product needs to remain affordable for
target users, product creates or
diminishes opportunities for economic
advancement, high development cost
creates risk for organization

Consider a university with thousands
of students taking exams regularly.
The shift to online quizzes not only
eliminates the need for paper and ink
but also reduces administrative costs
associated with manual grading. The
institution could realize substantial
cost savings in the long run.

22

Closing Material

CONCLUSION

Our goal is to create an interface, useable to both students and professors. This will be achieved by

using prompt engineering, JavaScript, react, node.js etc. So far, we have done research on prompt

engineering, and identified several prompt patterns that will be helpful in eliciting the response we

want from ChatGPT. We have been able to communicate with ChatGPT using the OpenAI API

from JavaScript and have full round-trip communication from canvas to ChatGPT. The best plan of

action going forward is to further test and refine our current prototype, and to find a more

convenient way to access the application on canvas. Future designs may look to further optimize

token usage – for example, we are looking into using a hybrid fine-tuning / prompt engineering

approach. The reason for this will be to try and reduce the sheer size of the prompt that we

currently must pass the language model to get the desired results.

FINAL PROGRESS

Currently, our project is set up in a way that a student could take an exam through Canvas. Once a

student clicks on their link for the quiz, they will be redirected to that quiz. The student will type

“Ready” to begin the quiz. The back-and-forth conversation will be held, and once the quiz ends

the grade will be posted to Canvas. The backend is all tested and set up. The conversation with the

student will be posted to the database. The integration with Canvas is also working as expected,

where a student can get to our user interface through Canvas.

VALUE

This project represents an emerging field of educational technology at Iowa State University. It

makes the traditional exam-taking experience into a dynamic and interactive process. Finally, it

streamlines the administrative workload for professors while generating mass personalized

feedback. The project holds value for the student, teacher, and the university.

23

Appendix 1 – Operation Manual

The navigation from the student view is straight forward. Students will login to Canvas, and head to

their class. In our case, the the student heads to their assignment called “SDMAY24-36”. Within

this assignment, our created user interface will show up. You can see below; the quizzes will appear

for the student to click on.

Figure 4

Once the student navigates to their quiz, they will be taken straight to the quiz interface. This is
where the student can type “Ready” to start their quiz.

24

Figure 5

Once the quiz is done, the grade and conversation will be posted to the connected Canvas quiz. All
the student work is done, and the backend handles the grade posting and comment submission.

25

Appendix 2 – Initial Version of Design

Figure 6

The diagram has two paths that can be taken, one from the student and the other from the

professor of the class. We will start with the professor’s side of the diagram.

Professor

The professor will login to the Canvas interface through SSO, just as they would normally for any

class. Once logging in, the professor inputs the quiz data within Canvas, specifying content,

number of questions, etc. After which, the data is transferred to a third-party platform called

Chainlit. Here the quiz data enters a pipeline where it is processed by the ETG server and the

OpenAI API, which analyzes and enhances the data. The data is then returned to the Chainlit web

26

page. This is when the students can start their personal quiz. Once the student finishes the

interactive quiz with ChatGPT, the conversation data is sent through LTI services to update the

grade on Canvas and submit the conversation in the quiz comment.

Student

The student will login to Canvas through SSO just as they normally do. They will then navigate to

the quiz section of the specific course and click on the quiz that is due. Once the student opens the

quiz, they will be taken to our custom interface as an application setup through the Canvas API. As

shown by the diagram, the custom interface will be connected straight to a server and the OpenAI

API for ChatGPT purposes. The student will take the quiz through our interface. The quiz will

conclude for the quiz as specified by the professor, and the data from the quiz will be graded by

ChatGPT. The results will be stored in the database for each student. Once the grade is calculated,

the interface will send the data back to Canvas and enter it in the specified quiz section, so the

student is able to see.

Appendix 3 – Code

All code can be found in our Iowa Sate managed Gitlab instance:

https://git.ece.iastate.edu/sd/sdmay24-36. Our server is found at: https://sdmay24-

36.sd.ece.iastate.edu:3000/ (with Canvas authorization only).

https://git.ece.iastate.edu/sd/sdmay24-36
https://sdmay24-36.sd.ece.iastate.edu:3000/
https://sdmay24-36.sd.ece.iastate.edu:3000/

